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Theory for the Number of Genes Affecting Quantitative Characters*
I. Estimation of and Variance of the Estimation of Gene Number
for Quantitative Traits Controlled by Additive Genes Having Equal Effect

Y.C. Park##*

Department of Statistics, Florida State Univeristy, Tallahassee, Florida (U.S.A.)

Summary. A general expression for gene number estimation which encompasses the conventional formula was
derived. It provides a basis for gene number estimation from the data of recurrent selection experiments that
are not of sufficient duration to measure total response to selection.

Gene number estimates are considerably more reliable when heritability is high. The effect of heritability
on sampling variance is particularly important when gene number is large.

Generally the most effective ways of decreasing the variance of a gene number estimate will be 1) to in-
crease the number of generations in a primary selection program, 2) to increase the number of generations
in the two way selection program and 3) to increase population size.
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Introduction

The number of genes involved in the inheritance of
quantitative characters influences the limits of pro-
gress from recurrent selection. Falconer (1960)
stated that, with a given amount of initial variation,
a small number of genes will produce less response
than a large number and if a given amount of varia-
tion is produced by few genes their effects are great-
er than if many genes were involved.

Gene number estimates must be obtained indirect-
ly since the genes affecting a quantitative character
cannot be observed directly. Methods used included
1) the identification of genetic effects related to spe-
cific segments of chromosomes (Thoday and Boam
1959; Thoday 1961; Speickett and Thoday 1966; Ro-
bertson 1967), 2) comparison of theoretical and ob-

served distributions when simuitaneously consider-
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ing different generations, e.g., pure line parents,
F1, F‘2 and backcrosses (Powers 1934, 1963; Gates
1963), and 3) inference from phenotypic means and
genetic variances using materials in which the phen-
otypic means provide information concerning genetic
extremes (Castle 1921; Wright 1934, 1952, 1968;
Falconer 1960; Roberts 1966; Hill and Robertson
1966; Comstock 1969; Mather and Jinks 1971). The
last method usually involves long term selection ex-
periments or pure lines with genetic extremes and
F1 and F2 from the pure lines. Estimates by this
method are rarely available for economic species
because of the genetic extremes and the long gener-
ation intervals.

We estimate gene number from recurrent selec-
tion experiments in a population obtained by cross-
ing any pair of inbred lines. The proposed estimation
procedure does not require that total response to se-
lection be determined. The variance of the estimate

is derived and factors affecting its size are discussed.

A Basis for Gene Number Estimation When Gene
Effects Are Equal and Additive

When there is no epistasis and linkage disequilibrium,
the average contribution of genotypes from all segre-

gating loci (y) and the additive genetic variance (02)
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are (Comstock and Robinson 1948):
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where q; is the frequency of a favorable allele at the
ith locus, u, is onehalf the difference in effect be-
tween the two homozygotes, a; is a measure of dom-
inance at the ith locus and n is the number of segre-
gating loci. Considering the special situation in which
there is no dominance, all u's are equal, and all

q's are equal, the two quantities reduce to:

y =n(2g-1)u and
0; =n2q(1 - q)u2 .

Taking derivatives and removing q:
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Integrating the differential equation
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where b and ¢ identify any two generations in a re-
current selection program with ¢ >b.

When qQ, = 0.5, and q, = 1.0 or 0.0, the above

formula reduces:

where R represents the maximum response attain-

able by selection upward (or downward) and céo re-
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presents the initial additive genetic variance when

gene frequency is 0.5 at all segregating locis. This
is the formula described by Comstock (1969). When
D represents the range of values between extremes
of up and down lines in a selection experiment, one

half of D is equivalent to R. Hence
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which is the formula described by Falconer (1960).
Since D is equivalent to the difference between the
can be esti-
the

extreme plus and minus types and 020
ated b 2 02 - 02 and g02 - 02
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above formula can be expressed as follows:

D2
ns ——s——5— (Castle 1921),

5 2
8(op, - opq)

2 — (Wright 1934), or

1)

(Wright 1968),

where 05‘2’ cg‘l and 02 represent the total variances
among individuals in Fz, F1 and the parental strains
respectively. cé is the variance among individuals
due to environmental effects. '

Equation (1) can be considered as a general form
which encompasses the formula described by Castle
(1921), Comstock (1969), Falconer (1960), Wright

(1934, 1952, 1968) etc.

Variance of the Gene Number Estimate

Variance of a quantity (Z) that is a function of two
random variables (U, V) is approximately (Johnson
and Kotz 1969):
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The estimate of gene number from equation (1) can
be considered as a function of two variables

U

n-= v’

AV

where U = 37(2; - )_ri and

2 2
V—Ogb—ogc.

Using the partial derivatives in equation (2),
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where " indicates an estimate.

. -2 -2 - = \(= -

In practice Y = y_ -y = (yC + yb)(yc - yb) from
one way selection. The primary selection program
can be upward or downward. Let U = XG where
X = 370 + ib and G = 570 - ib’ Applying the partial

derivatives to equation (2) once more we obtain

2 2

o?wx oé+2XGc7f\" ........ (4)

2
oy = G XG

V is the difference of the additive genetic vari-
ances between the two generations b and c. The most
efficient method of estimating the additive genetic
variance is by the product of the realized heritability
and the phenotypic variance estimates (Hill 1972).
Assuming the phenotypic variance will be the same

in generations b and c, we can write
2
V = (Rb - Ro)op R

where R is the realized heritability and 0}2) is the

phenotypic variance. Let

S=R, -R and
Q=o0_.
Then

%

cé = Q2 cé + Sch + ZSché ......... (5)

It is shown below that both covariances oG9 and
ogg are zero. Substituting equations (4) and (5) into

(3) we obtain

2

2 (1 22 .22
of = (z_v) (G%0% + X% 0% + 2XGogal +
2
+ (- 2U—V) [Q20§+Szoé] ..... (6)

The real valuesof U, V, G, X, S and Q given the

assumptions basic to equation (1) will be

2 -2
Us=ys -

2.2
4n“u (q()-qb)(qC tq - 1),

_ 2 _ 2
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1}

n2u'2(qC - qb)(qC Q- 1),

X:yc+yb

2nu(qC * Q- 1),

G=g’c"yb

2nu(q, - q.) and

2 23,2 2
S-(ogb cgc)/cp-v/cp

2 2
2nu (qc - qb)(qc Q- 1)/cyp .

Substituting these in equation (6),
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(7)

X and G can be estimated in terms of the popula-

tion means for generations 0, b and c. In genral

where P is the population's phenotypic mean, Y is
the true population genotypic mean and e is the devia-
tion of P from Y. Also

E(F)=Y=zao+y
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because E(e) = 0. It follows that

E(P_b) =or+j-rb
E(ﬁc) o+ ic and
E(Po) = o+ }-fo s

where )70 = n(2q, - 1)u = 0, since q, = 1/2.
Therefoie, E(?b +_Fc —_ZI?O) =¥+ ¥, = X
and E(Pc - Pb) =¥, - ¥,

estimated as:

=G, so X and G can be

X=P +P_ -2F, and

é = P, -P .

If there are no covariances among P, l?b and 1_3;
ok =V(F)+ V(F) +aV(F) , (8)
o0& =V(F)+V(F) and (9)
IL4 = V(}?C) - V(ﬁb) R (10)

when b # 0. In the special case where b = 0,

)%:G:? - P and
c 0

o)gi = o‘é = Oﬁd = V(-ﬁc) + V(ﬁb) . (11)

Consider now the variance of the estimate of
S=R

b
realized heritability is to divide and estimate of ge-

- RC. The standard procedure for estimating

netic response to selection by the total selection dif-
ferential employed in achieving the response. The two
way selection program for the estimation of the addi-
tive genetic variances at generations b and ¢ is more
practical than the one way program for two reasons.
First, more selection can be accomplished in a given
period of time. Second, the populations are compared
to obtain the required estimate of genetic response,
become available at the same time and can be com~
pared in the same macro-environment (Comstock and
Moll 1963). The advantage is that macro-environment
effects are thereby eliminated as a source of error in
the estimate of genetic response. Let us assume that,
starting from generation ¢, two-way selection is prac-
ticed for two generations. Let

Theor. Appl. Genet. 50 (1977)

l?ch = the observed phenotypic mean of the popu-

lation resulting from the two generations
of selection for high performance,

and '1501 = the observed phenotypic mean of the popu-
lation resulting from two generations of
selection for low performance.

Then I?ch - -P—cl estimates the total genetic response.

Hence

Pen =Pl = Yen " Ye1 * ®ch ~ S (12)

where ich is the coded genotypic mean for the sec~
ond (final) set of selected parents in the population
selected for high performance and icl is the mean
of parents selected for low performance.

The following subdivision of ich - 3}0} will be use-
ful:

Yohz ~ Yo12 = H2 + H1 - L1 - L2,

where Hl =y py =Y 122 Y012 ~ Vo110
cause no covariances are to be exprected among H2,

etc. Be-

Hi, L1 and L2, the variance of Yonz ~ Yei2 is
V(H2) + V(H1) + V(L1) +« V(L2) .

The variances of single generation responses [V{(H1),
V{(L1), etc.] around their exprected values are due
to deviations of genotypic values from regression on
phenotype in the selected trait. Given only additive

gene effects (the situation being considered)

2
(¢}
02 =02— P 02=02(1-h2)
A0 S A W P g
p

where hz is heritability of the selected trait and be-
cause o__ = crz = 02. It follows that the variance

yp ¥y €

around the expectation for the average of N selected

individuals will be
02(1 -h?)/N .

However, given m individuals selected to be male
parents and f selected to be female parents, the var-

iance of the effective mean deviation will be

([R-v?) P -n?)
1l g , £
4 m f

_m+f ~ 2
= Tt (1 h)cg.
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For two generations of two way selection
= = _ 2 2
V(¥ =¥ = 40g(1 - h*)/N

if numbers selected are the same in both populations
in both generations and the change in 02 between
generations is assumed to be trivial. In general,

given x generations of two way selection

V(i - o) = 2x0§(1 - n3)/N, (13)

where N = 4mf/(m + ) when selected male parents
are distinct from selected female parents. The num-
ber of generations (x) should be small enough so the
assumption that changes in cg will be trivial is jus-
tified.

The quantity symbolized as '"e" in equation (12)
has both a genetic and a nongenetic component. How-
ever, if we assume that each parent has the same
number of offspring as every other parent of the same

Sex

V(e) = (14)

B \
T YTk
where w is the total variance among individuals with-
in full-sib families, B is the non genetic variance
among full-sib families, f is number of female par-
ents and k is number of offpsing per female parent.
The total variance of the estimate of genetic response

is obtained by combining (13) and (14)

2x02(1 - h?)
P _.P _ g
V(P - Py) N

1}

+2[§+ﬂ].

Tt (15)

Then since S = R, - R where R_ = (Rch - Rcl)/Dc
and Dc- is the total of the selection differentials in

the two way selection
2.l 22, 2(s. Mo
98 7 N b’ %b* T *

gc+ I (16)

_ W\
1 ]2x 2, 2 2 [«
+ W(l-hc)c <B+——->J.

Here N, x, f and k are assumed equal in the two way
selection initiated in generations b and c.

The most natural source of an estimate of
UQ = os) is from data two-way selection proposed
as the source of realized heritability estimates. As-

suming a normal distribution, the sampling variance

of the estimate of a variance is (Fisher 1958) twice
the square of the variance divided by the number of
degrees of freedom for the estimate.

Hence, if all data from the two-way selection pro-

grams were combined

2 204 04
o, =

~ = P 2 P
Q7 4x(fkk - 1) ~ 2xfk °

Not all degrees of freedom have meaning for the
components of total variance derived from genetic
variance among parents or from family environmen-
tal effects. However, since the within family compo-
nent will ordinarily be the major protion of the vari-
ance, (16) is considered a satisfactory approxima-
tion.

Data from which X and & are computed are dis-
tinct from the data used to compute S and Q, oG =
zero. Though the data from which Q is computed is
part of that used for §, there is no covariance cﬂé,
because $ is a function of phenotypic means and &
is pooled variance within groups.

Consideration of equations (7), (8), (9), (10)
and (11) indicates that a final expression for cf\zl will
be different for the case when b # 0 than for the case
when b = 0. At the same time it is clear from equa-
tion (7) that the size of (qC - qb) has a major effect
on the variance of fi; the coefficients of cé and cé
are inversely proportional to the square of (qc - qb) .
Given any fixed number of generations in the primary
selection program, (qc - qb) will be a maximum
when b = 0. For these reasons attention will be fo-
cused on the b = 0 case. Using equations (11), (16)
and (17) to make substitutions in (7) and remember-
ing that q = 1/2 when b = 0, we obtain

o2 = 1 ? V(F) + V(B.)]
ﬁ Lu( _1._) C + 0
qc 2
2 [ 2, 2 2, 2
. i op - % (1-}102)0LO (1-hcz)cgc
LZu (qc__z_) | Dy bg
[ 2 2 i
. o 2B+w0/k+B+W£[k
2u2(qc-%)2 t DZ D?
n2
* 2xfk " (18)
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Assuming the total selection differential is the same
in the two-way selection programs conducted for es-
timation of Rb and RC, then

D, = 2x1c:;po and Dc = 2Xio

0 pc’

where i is the average selection differential (in
standard deviations) per population per generation.

Now (18) can be rewritten as follows:

o§=I+II+III+IV, (19)
where

[Py v
I = ————1— [V(P ) + V(Po)] s

ulq. -3) ©

L c 2

o2

~ D 1 12y,2 12y, 2
I = {1 ho)ho+(1 hc)hc] ,

1,2 .
L,?.uz(qc— —2-) 2x12N

| o2 ? B+W
I = p 1 o/k |
20%(q - 2)%|  2txi® o2
c 2 pO
B+W
_2_0113 and
e}
pc
2
e Lo .

This subdivision of Gr'%l is made bacause evaluation of

the components of ole may provide a basis for reduc-
duction of 0?1 by changes in experimental design.

A portion of the parameters assumed as the basis
for evaluation of 0;21 will be components of the pheno-
typic variance among individuals in the base popula-
tion (generation zero). Let
c§=M+F‘+W, (20)
where F is the variance among individuals due to
different female parents, M is the genetic variance
due to different male parents, and W is the variance
among full-sibs. F can be subdivided into a nongenet-
ic portion (defined earlier as B) and a portion due to

gentic variation among female parents. W can also be
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divided into genetic and nongenetic portions. Given on-
ly additive gene effects, the assumption being made,
M= 1/4 og, the genetic portion of F is equal to M

and the genetic portion of W is equal to 2M. Thus, for

this case

o§=4M+B+E, (21)
where E is the nongenetic portion of W, and

h? = 4M/o§ ) (22)

From equation (20) it is apparent that if a population
consists of the individuals, k in each of f full-sib
families with f/m families sired by each of m male

parents,

V(ﬁ)=%+—l;+

(23)

kS

d, will depend on parameters n, the number of
segregating genes, and c, the number of generations
of selection in the selection phase. The expected
change of gene frequency from one generation to the

next can be approximated as follows (Falconer 1960):

E(aq) = —%q(l - qu .
“p

Since E(Aq) is the expected change per generation,

we have

d D
a—?: —zq(1-q)u.
“p

The solution of this differential equation is

q

C C
d D
= = d
Jqfl—qf cz“f b
dp p 0

where and are frequencies at generation 0 and
B e qu

c, respectively. Assuming
q, = 1/2, we obtain

(24)

Duc
2
a.
p
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and that the expected gene frequency at generation c
is
z

e

e~ z (25)
1+e

where z = 1—)%

G

In this instance D = Io_ is the selection differen-

luc

tial per generation and z = . Given the magnitude

of % or M., u can be eval};)xated as u = 11202 /n
g0 0’ gd’

2 2 2
because %0 = 2q(1 —qo) u“n = u“n/2, when qg = 1/2,
and gene effects are additive and all have the same

u value.

Quantitative Evaluations

Equations (19) through (25) can be employed to ob-

tain quantitative information concerning cg. Results

Table 1. Variance of the gene number estimate (0%) and the number of sires (m) required to estimate gene

159

are shown in Table 1 for the following set of parame-

ters:

I(selection differential in standard units in the
primary selection program) = 1.2;

i(selection differential in standard units in the two-
way selection program) = 2.0;

M =
M =

5, D=15 B=10, W=80, h
10, D = 20, B = 10, W = 70, h® = 0.4;

2:0.2 or

f(number of female parents in the two-way selec-
tion programs) = 4m {where m is the number of
sires);

k(number of offspring per dam in the two-way se-
lection programs) = 10;

x(number of generations in the two-way selection
programs) = 1, 2, 3, 4;

n(number of segregating genes) = 10, 50, 200;

and c(number of generation in the primary selec-

tion program) = 5, 10, 20.

Values of f and k were taken to be the same in gen-

erations 0 and c of the primary selection program

and in the two-way selection programs, but they

number (n) at various levels of coefficient variation (Yo%, ) with given heritability (h®) and number of gener-
ations in the primary (c) and two way (x) selection program

n =10 n =50 n = 200
m to make vcg = m to make l’gg = m to make PU’% =
f/n f/n f/n
o2 m-o2 m. o2
¢ x 0.1 0.2 0.4 @ 0.1 0.2 0.4 %4 0.1 0.2 0.4
h2 =0.4
5 1 95 95 24 6 25,997 1,040 260 65 5,806,305 14,516 3,629 907

2 57 57 14 4 10, 944 438 109 27 2,383,672 5,959 1,490 372
3 46 46 12 3 6,974 279 70 17 1,476,749 3,689 922 230
4 42 42 11 3 5,187 207 52 13 1,065, 467 2,664 666 166

10 1 28 28 7 2 2,269 91 23 6 407,570 1,019 255 64
2 19 19 5 1 1,088 44 11 3 167,240 418 105 26
3 16 16 4 1 733 29 7 2 103,916 260 65 16
4 15 15 4 1 575 23 6 1 75,400 189 47 12

20 1 23 23 6 1 612 24 6 2 36,918 92 23 6
2 16 16 4 1 343 14 3 1 15,281 38 10 2
3 15 15 4 1 274 11 3 1 9,639 24 6 2
4 14 14 4 1 246 10 2 1 7,112 18 4 1

n?-0.2

5 1 703 703 176 44 319,689 12,788 3,197 799 73,453,020 181,633 45,908 11,477

2 306 306 77 19 123,210 4,928 1,232 308 28,014,298 70,036 17,509 4,377
3 209 209 52 13 74,067 2,963 741 185 16,745,473 41,864 10,466 2,616
4 167 167 42 10 52,561 2,102 526 131 11,838,077 29,595 7,399 1,850

10 1 117 117 29 7 24,345 974 243 61 4,812,388 12,031 3,008 752
2 57 57 14 4 9,253 370 93 23 1,838,233 4,596 1,149 287
3 43 43 11 3 5,538 222 55 14 1,000,622 2,752 688 172
4 37 37 9 2 3,928 157 39 10 779,398 1,948 487 122

20 1 51 51 13 3 3,046 122 30 8 385,428 964 241 60
2 29 29 7 2 1,119 45 11 3 147,339 368 92 23
3 21 21 5 1 663 27 7 2 88, 507 221 55 14
4 19 19 5 1 469 19 5 1 62,941 157 39 10
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Table 2. Coefficient of variation of the gene number
estimate when the number of sires {m) is 50 with
given levels of heritability {h®) and generation num-
ber in the primary (c) and two way (x) selection
program

h™=0.4 h™ =0.2
c x n=10 n=5 n=200 n=10 n=50 n=200
10 2 0.062 0.093 0.289 0.107 0.272 0.96
3 0.056 0.076 0.228 0.093 0.210 0.71
4 0.055 0.068 0.194 0.086 0.177 0.62
20 2 0.056 0.052 0.087 0.076 0.095 0.27
3 0.055 0.047 0.069 0.065 0.073 0.21
4 0.053 0.044 0.060 0.062 0.061 0.18

could be different. The number of male parents (m)
per generation was not specified and results are pre-
sented in terms of m.

Table 2 shows the coefficient of variation of n when
m, the number of sires, is 50 for all combinations
of ¢ =10, 20; x= 2, 3, 4; h2= 0.4, 0.2 and n = 10,
50, 200.

Let m = 50, x = 3 and ¢ = 20. Table 2 shows the
coefficients of variation are different, dependging on
heritability and gene number. Using the coefficients
of variation in Table 2 and assuming a normal distri-
bution for fi and no bias in the estimates, the follow-
ing probability ‘statements can be made. If the gene
number (n) is 10 and h? = 0.4, probabilities of the

estimate will be

P(8.9<fi<11.1) = 0.95 and

P(n>11.7) = 0.001.

When h%=0.2

P(8.7<n<11.3) = 0.95 and

P(Aa >12.0) = 0.001.

If n=50 and h% = 0.4

P(45.5 <f < 54.5) = 0.95,

P(A >57.3) = 0.001 and

P(fi < 42.7) = 0.001.
If h®=0.2

P(42.8 <t < 57.2) = 0.95,
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P(f >61.3) = 0.001 and

P(f < 38.7) = 0.001.

If n =200 and h%= 0.4

P(173.0 <fi < 227.0) = 0.95 and
P(fh < 157.4) = 0.001.

it h2=0.2

P(117.7 < < 282.3) = 0.95 and

P(f <70.2) = 0.001.

These probabilities together with Tables 1 and 2
indicate that estimates are considerably more reli-
able when heritability is at least 0.4 than when it is
low (h? = 0.2). The effect of heritability on sampling
variance is particularly important when the gene num-
ber is large. The probability statements indicate that
when estimates are obtained from a relatively large
experiment conducted through a reasonable time
span, sampling errors would not prevent distinguish-
ing among small (in the region of 10}, intermediate
(in the region of 50) or large (200 or more) num-
bers of genes.

Generally the most effective way of decreasing
the variance of gene number estimates is to increase
the number of generations (c) in primary selection,
since terms II and III of the variance of n are de-
creased in proportion to the fourth power of the
change of gene frequency. Increasing the number of
generations (x) in the two-way selection program
would have similar effects since term III is de-
creased in proportion to x2 and term II in propor-
tion to x. However, two-way selection should not be
continued beyond the generations of linear responses.
Table 1 shows gains are small from increasing x be-
yond four. Table 1 indicates all portions of the vari-
ance n are inversley proportional to the number of
sires and therefore to population size. Term II de-
creases with increased number of sires in the two-
way selection phase and the others vary inversely
with sire number in primary selection.

If heritability of a quantitative character is low
and the gene number is large, many generations of
primary selection are required to obtain an estimate
of gene number with reasonable precision. However,

with two-way selection, estimates of heritability Vo



Y.C. Park: Number of Genes Affecting Quantitative Characters. I. 161

can be obtained early before the number of genera-
tions is critical. If this indicates considerable reduc-
tion in the additive genetic variance, the final two-
way selection phase can be initiated and the program
brought to termination with some confidence that the
sampling variance of the estimate obtained will be
reasonable. On the other hand if little change in ad-
ditive genetic variance is indicated, the primary se-

lection phase should be continued over a longer period.
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